
unique in the class of analytic functions we have u2(r) = kZuz(kr) for r < i. Setting in 
this identity the limiting value r = i, we find that u2(1) = k2uz(k) < 0, which contradicts 
the boundary condition for the solution u 2. 

We have thus established that the nontrivial solution of the boundary-value problem 
(6.1) in the circle ~ c R 2 is unique. 
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CONSERVATION LAWS, INVARIANCE, AND THE EQUATIONS OF GAS DYNAMICS 

S. M. Shugrin UDC 517.95 

In a large number of papers by L. V. Ovsyannikov, his students, and followers, an anal- 
ysis was made of group properties of many equations of mathematical physics and it was shown 
that a knowledge of group properties of the equations is useful for their classification 
and for obtaining particular solutions (see, for example, [1-3]). An inverse formulation 
of the problem is also possible: from a given group, sometimes with an additional assumption 
concerning the transformation law for the desired quantities, to seek the class of differen- 
tial equations invariant with respect to this group [4, 5]. A similar problem arose, in 
effect, at roughly the same time, from the theory of relativity, wherein the physics and 
mathematics began to search for equations describing the dynamics of some range of phenomena 
dependent on a knowledge of the laws of invariance. From this standpoint the most fundamen- 
tal object turns out to be a group, and the dynamic equation, in its way, turns out to be 
the "differential representation" of this group. And just as there exists a supporting theory 
of linear representations of groups, there exists, indeed, a theory of "differential repre- 
sentations." In this regard, it is necessary to turn our attention to the importance of 
rational structural limitations of the class of equations being sought. The fundamental 
equations of mechanics and theoretical physics possess a definite structure~ They are usual- 
ly quasilinear and admit a complete set of conservation laws (see Sec. I), and, consequently, 
have a symmetric structure [6-12]. A second simple, but useful observation, consists in 
the fact that the quantities being sought have, as a rule, a specific tensor type (scalars, 
vectors, etc.) with respect to suitable transformations. This holds even for the basic con- 
servation laws (mass, momentum, et al.). Only in quantum mechanics do quantities of another 
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kind appear, namely, spinors. By the same token, both the quantities being sought as well 
as the basic conservation laws may be classified beforehand corresponding to the simplest 
tensor types (more generally, in accordance with irreducible representations of fundamental 
groups). Furthermore, invariant equations may be found starting from this classification. 
Hence, at least in principle, a complete classification of elementary types of differential 
equations of mechanics and theoretical physics may be obtained, i.e., a complete structural 
enumeration of their possible forms (to within empirically determined constants and equations 
of state). For the description of "component" types ("mixtures," etc.) additional structural 
constraints may apparently be necessary. From the logical point of view, a similar classifi- 
cation must lie at the foundation of a general theory of mathematical physics. 

In the present paper we illustrate some characteristic aspects of the problem by way 
of the equations of gas dynamics, both Galilean and Lorentzian. 

i. Conservation Laws~ Let x ~ (x ~ .... x n) e ~, where ~ is a domain in R n+l, w(x) 
R m, q,k(w(x))e R s (k = O, .... n), f(w(x))e R s. 

In connection with the basic aims of this paper we consider conservation laws of only 
the first order with respect to derivatives and with functions appearing in them depending 
explicitly only on w. 

By a conservation law we mean a relationship of the form 

j ,  a.~./~ = Y ,  ( I . i )  
& = O  

satisfied throughout Q. A conservation law is exact if f = 0o 

Usually, the functions w(x) satisfy some condition (belonging to class K), for example, 
some equation. In this case, it is required that Eq. (i.i) hold for arbitrary we K, for 
example for an arbitrary smooth solution. We denote the Euclidean scalar product of vectors 

and b by (alb). 

A system of conservation laws (i.i) is called complete if 

a) the number of equations is equal to the dimension of w, i.e., s = m; 

b) there exists a smooth function u(w) ~ (u(1), ..., U(m )) such that after scalar mul- 
tiplication of Eq. (i.i) by u we obtain yet another conservation law 

~  
: h~ ( 1 . 2 )  

l:~O </ , ! '  " 

where ~k = ~k(w )e R; h = h(w) e R; 

dq/~_ (z~!j~70. i~ = (ui/); (1.3) 

c) the mapping w + u(w) is locally one-to-one. 

We speak of the conservation laws (i.i) as basis laws and of the conservation law (1.2) 
as a closing law; the functions u(~) are integrating factors. 

By virtue of c) we assume that w = w(u), while ~k ~, f, and h are considered as func- 
tions of the integrating factor u (locally). In what follows, everything will be done local- 
ly, where such inversion is possible. For simplicity we assume that f = 0. 

2. Galilean Systems (see also [ii, 13, 14]). Throughout this section repeated Latin 
indices will indicate summation from i to 3. Let us assume we have a physical system S for 
which the invariance principle with respect to the Galilean group F holds, including orthog- 
onal transformations of coordinates (x l, x 2, x3), forming the group SO(3), and the Galilean 
transformations 

~,o _~ ,~ , x':---~ .~'"-T- {":.c :~ ~"". = I .  _~ 3; L " == cons t )  ( 2 . 1 )  

(x ~ is the time coordinate). We assume that state S can characterize the set of quantities 
v(x) ~ (v l, v 2, v 3) and q(x) ~ (q(1) ..... q(v)), so that w = (v, q), m = 3 + v. We as- 
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sume that v has the meaning of velocity, i.e., with respect to transformations of the group 
S0(3), v k are transformed as a vector and, with respect to the transformations (2.1), are 
transformed according to the rule v k + v k + U k. We assume that the quantities q(a), with 
respect to all transformations of F, are transformed as scalars q(=) + q(~). If we intro- 
duce the Galilean 4-vector of velocity V -- (V ~ V l, V 2, V3), putting V ~ = i, V k = v k (k = 
i, 2, 3), it turns out, with respect to all transformations of F, that V transforms as a 
contravariant vector. Thus, by hypothesis, state S is characterized completely by a single 
vector field V(x) of a special form (V ~ = i) and by the scalar fields (q(~)). 

We assume that a change of state S is described by the system 

aw + A n (w) a~ a.-- ~ 7~.~ = O, ( 2 . 2 )  

where A k are matrices. In order that system (2.2) be invariant with respect to the indicated 
transformations of group F, it is necessary and sufficient that Eq. (2.2) be written as 

. 

a2&--i 4- v ~  + %rotv + ~ l l (~ )g r adq (a  ) ,-: 0; (2.3a) 
c~ 

~ 1 7 6  + ~ d i v v =  0 (2 3b)  
Ox ~ a x  h 

(k = k(q), ~1(~) = ~U)(q), ~ = ,X~i')). 

Assume for definiteness that v e 3. In order that system (2.3) admit conservation laws, 
functions ~, N(a), and o must satisfy conditions more,conveniently formulated in terms of other 
functions. We are $nterested only in equations admitting a complete set of conservation 
laws. For this it is necessary, as a consequence of Eqs. (2.3), that the conservation laws 

be: 

a__o + o (o? )  ..... 0; 
Ox ~ a x  I: 

0 (p~) 

(2.4) 

o (pv~v~ + 5~:~P) 0 ( i =  1, o, :~): ( 2 . 5 )  
ax---g- + a.cr--- ~ - _ 

a~(~) a('r(~)~) 0 (~ = 1 v--1), ( 2 . 7 )  
O,c o @ Oxt~ ' . . . ,  

w h e r e  p = p ( q ) ,  P = P ( q ) ,  E = E ( q ) ,  ~ ( a )  = ~ ( a ) ( q ) ,  and 6 i k  i s  t h e  K r o n e c k e r  symbo l .  F u n c t i o n s  
p, P, E, and ~(a) are connected by relations which may be described with the aid of a differ- 
ential form, described below. We recall that all constructions are made locally, so that 
the transition from Eqs. (2.3) to Eqs. (2,4)-(2.7) is possible, generally speaking, only 
locally in a suitable image of a chosen neighborhood of some point q0. The choice of this 
neighborhood is determined by conditions from which it follows, in particular, that p ~ 0. 
In order to be able to write a condition for a relationship of p, P, E, and ~(a) in a suit- 
able form, we need to determine which of the conservation laws is to be taken as closing laws 
and which as basis laws. This is done most clearly in Sec. 3 for Lorentzian equations, where 
a somewhat different set of hypotheses is adopted. In the meantime, we simply analyze two 

fundamental possibilities. 

A. Assume that a closing conservation law coincides with one of Eqs. (2.7). Changing 
the notation somewhat and using the fact that p ~ 0, we write Eqs. (2.4)-(2.7) as 

basis conservation laws 

a__p + a ( p ~ )  O; 
Ox ~ Ox ~ 

o (f_J_) + __o (pdv~ + 6 ~ P )  = 0 (i = t ,  2, 3); 
a x  o Ox ~ x 

o.--- ~ p s +.--T-2 ]J + 9v~ ~-7 P/P + 2 /J 

o~(p~(~)) + ~ (,ov~c(~)) = 0 (a = t . . . . .  ~ - -  2); 
Ox ~ 

( 2 . 8 )  

( 2 . 9 )  

( 2 . 1 o )  

( 2 . Z l )  
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C]-os inR.r., co~e=vatiO.n, law 

a (ps) "F a (pv~s._.__J) O. ( 2 . 1 2 )  
, ax--..- ~ - a x  k = 

In order for system (2.8).-(2.12) to satisfy a condition of completeness for conservation 
laws, the function p, P, r c(~), and s must satisfy the relation (again in a suitable neigh- 
borhood) 

Tds  = de + P d  (l,,'p) - -  ~ V(co)dc(~) ( 2 . 1 3  ) 

(T and ~(~) are functions of q). This is the well-known Gibbs relation from thermodynamics. 
Applying the usual thermodynamic interpretation, we can s@y that s is the specific entropy~ 
c is the specific internal energy, P is mass density, e is the concentration of some phase, 
T is the absolute temperature, P is the pressure, and D(~) is the chemical potential. 

Condition (2.13) is a consequence of the completeness requirement for conservation laws 
(2.8)-(2.12). Conversely, if we have the equations (2.8)-(2.11), relation (2.13) is satis- 
fied, and T ~ 0, the equation (2.12) then follows from Eqs. (2.8)-(2.11). To see this, we 
need to multiply Eq. (2.8) by (-z + Iv12/2)/T, Eq. (2.9) by -viT, Eq. (2.10) by l/T, and 

Eq. (2.11) by -p(~)/T, where z~--~--8+P/p--Ts--~ ~(~)e (~). After adding and taking relation 

(2.13) into account, we obtain Eq. (2.12) (z is the specific Gibbs thermodynamic potential). 

B. Let Eq. (2.10) be a closing conservation law. A similar case holds, for example, 
in the theory of long waves (of course, the equations then are not three-dimensional, but 
one- or two-dimensional) in describing the transport of ingredients (moreover, right-hand 
terms also appear, but this is not important now). We write Eqs. (2.4)-(2.7) as 

basis conservation laws 

closing conservation law 

Functions p, P, c (~), 

ao a (p~) 
ax--- 6 + - -  = O; (2.14) ax h 

a(p~)~o + ~(f ,~,~ + a~p) = o: (2.15) 

a(,oc~=~___ )+  o (pukd=>)=O (cz=1, ~'--I); (2.16) 
ax 0 ~ x  ]~ �9 , . 

a:-- ~ p e +  + a x  h pu~ e + T +  = 0 .  

and e must be connected by the relation 

u 

(2.17) 

( 2 . 18 )  

(p(~) are functions of q). 
for conservation laws (2.14)-(2.17). 
relation (2.18) holds. Multiply Eq. 

E by p(~), where z~e+-~--- ~(=)d~). 

we obtain Eq. (2.17). 

Equation (2.18) is a consequence of the completeness requirement 
Conversely, assume we have Eqs. (2.14)-(2.16) and that 

(2.14) by z - Iv12/2, Eq. (2.15) by v i, and Eq. (2.16) 

After summation, with Eq. (2.18) taken into account, 

Thus, the combination of requirements of invariance and conservation law completeness 
rigidly determines the structure of the equations of gas dynamics. The Gibbs relation (2.13) 
and its analog (2.18) are also obtained automatically. 

Remark 2.1. The approach we have described is based on separating the invariance hy- 
pothesis leading to Eqs. (2.3) and the conservation law completeness hypothesis, ensuring 
the possibility of a passage from Eqs. (2~ to Eqs. (2.4)-(2.7) by means of the complemen- 
ted Gibbs relation or its appropriate analog. Such an approach seems reasonable. However, 
in this connection there also arise negative aspects. Equations (2.3) and (2.4)-(2.7) are 
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equivalent except, possibly, for certain cases of degeneracy. Nevertheless, ho~e~er, an 
additional hypothesis is necessary for the assertion of equivalence. AS a result, the domain 
in which Eqs. (2.3) are reduced to Eqs. (2.4)-(2.7) does not coincide, generally speaking, 
with the domain of biuniqueness of the mapping w + u(w) (it may be a smaller domain). This 
makes precise formulations more involved and, it seems, not altogether natural. The percep- 
tion of arbitrariness can furnish a method of separating Eqs. (2.4)-(2.7) into basis rela- 
tions and closing relations. In Sec. 3 we take a different approach for Lorentzian equations, 
where from the very beginning the conservation laws are classified according to tensor types. 
The resulting set of assumptions is, in my view, simpler and more natural. A similar aP- 
proach is, of course, possible even for Galilean equations [with certain changes, since in 
some cases one operates with the group SO(3) and in others with the group F; see Remark 2.2]. 
However, to avoid repetition we restrict our analysis to the Lorentzian equations. 

Remark 2.2. In accordance with a tradition of classical mechanics we emplg[ three- 
dimensional symbolics. A four-dimensional notation is also possible. We put TIJ ~ pViVj + 
6(3)iJP, where V I are the components of the Galilean 4-velocity, i, j = 0, i, 2, 3, 

�9 . J l ,  ~f i = ] ,  i=/=o, 
~--[0, ~f  i ~ ] ,  o~ i = 0 ,  o~ i = 0  

I t  i s  e a s y  t o  v e r i f y  t h a t  ( T i J )  i s  a c o n t r a v a r i a n t  t e n s o r  w i t h  r e s p e c t  t o  a l l  t r a n s -  
f o r m a t i o n s  f rom F. We w r i t e  Eqs .  ( 2 . 4 )  and ( 2 . 5 )  as  

3 

OT~---J. j = 0 (i = O. i ,  2, 3), ( 2 . 1 9 )  
j ~ o  Ox 3 

and Eq. (2.7) in the form 

3 

a(vJ~ (~)) = O. ( 2 . 2 0 )  
�9 Ox J 
3=0 

The l e f t  s i d e  o f  Eq. ( 2 . 1 9 )  i s  a c o n t r a v a r i a n t  v e c t o r  w i t h  r e s p e c t  t o  a l l  t r a n s f o r m a -  
t i o n s  f rom F, w h i l e  t h e  l e f t  s i d e  o f  Eq. ( 2 . 2 0 )  i s  a s c a l a r .  E q u a t i o n s  ( 2 . 5 )  n a t u r a l l y  a r e  
n o t  w r i t t e n  in  t h e  f o u r - d i m e n s i o n a l  t e n s o r  s y m b o l i c s .  T h i s  i s  due t o  t h e  f a c t  t h a t  t h e r e  
i s  no n o n d e g e n e r a t e  m e t r i c  f o r  t h e  G a i i l e a n  g roup  ( f o r  t h e  L o r e n t z  g roup  t h e r e  i s  t h e  Min- 
kowski  m e t r i c ) .  We c a n n o t  t h e r e f o r e  p r o c e e d  f rom t h e  c o n t r a v a r i a n t  4 - v e c t o r  (YJ)  t o  a co -  
v a r i a n t  one ( t h e  i n d e x  c a n n o t  be o m i t t e d ) .  The l e f t  s i d e  o f  Eq. ( 2 . 6 )  i s  a s c a l a r  r e l a t i v e  
t o  SO(3) .  I n v a r i a n c e  o f  Eq. ( 2 . 5 )  w i t h  r e s p e c t  t o  r i s  a c o n s e q u e n c e ,  f o r  e x a m p l e ,  o f  t h e  
fact that Eq. (2.6) follows from the invariant equations (2.3). Integrating factors are 
also classified according to tensor type. 

3. Lorentzian Systems. We consider now a physical system S invariant with respect 
to the Lorentz group L, including transformations of group S0(3) and Lorentz transformations. 
We assume that state S can be completely characterized by a 4-vector contravariant field 
Q = (Q0, Qi, Q2, Q3) and by scalar fields q(x) ~ (q(~), .... q(v))" For definiteness we 

assume that v e 2. The quantity 

3 

o (x)  ~ OOQO __ I q~q~ -~ (3.1) 
C k ~ l  

i s  an i n v a r i a n t  o f  g roup  L (c  i s  t h e  s p e e d  o f  l i g h t  i n  a vacuum) .  We f i x  p o i n t  x 0. T h r e e  
c a s e s  a r e  p o s s i b l e :  o ( x  0) > 0, o ( x  0) = 0, and o ( x  0) < 0. I n  t h i s  p a p e r  we a n a l y z e  o n l y  
the first case. By virtue of the smoothness of o(x) there exists a neighborhood G(x 0) of 
point x 0 where o(x) > 0. We assume further that x~ G(x0). We put V i ~ Qi/cr~ (i = 0, i, 2, 
3). By virtue of relation (3.1), 

3 

VoVO i = I .  ___~ ~ V h V  h ( 3 . 2 )  
c h = l  

We can  now assume t h a t  s t a t e  S i s  d e f i n e d  by a s i n g l e  v e c t o r  f i e l d  V ( x ) ,  n o r m a l i z e d  
in accordance with relation (3.2), and (v + i) scalar fields (o, q) ~ (o, q(1), ..., q(v))" 
We call vector V the Lorentzian 4-velocity. Repeated Latin indices will indicate summation 
from 0 to 3. 
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We consider the divergence differential expression J = 8~J/~xJ, where #J depends only 
on (V, o, q). In order that J be a scalar (invariant) with respect to all transformations 
of group L, it is necessary and sufficient that #J have the form #J =~'(o, q)VJ + const. 

Consider now the differential expressions F i ~ ~Tij/~xJ (i = 0, i, 2, 3). Here Tij de- 
pends only on (V, ~, q). In order that the set of quantities (F i) transform as a contravari- 
ant vector with respect to all transformations from L, it is necessary and sufficient that 
Ti3 = $(o, q)Vivj + gijp(o, q) + const, where gij is a contravariant Minkowski tensor [g00 = 
_i/c =, gii = i (i = I, 2, 3), gij = 0 (i ~ j)]. it is convenient to introduce a quantity 
p by the equation ~ ~ p + P/c =. 

In accordance with the program outlined in the introduction, we now classify conserva- 
tion laws, describing the dynamics of S, according to elementary tensor types. Namely, since 
we have 3 + i + v unknowns, we assume that the basis conservation laws include one four- 
vector relation and ~ scalar ones, so that the basis, law s may be written as 

[(9 + P/c"-) V*V j + gop] = 0 (i = 0, I ,  2, 3); 
cOaJ 

o (A vO o; 

Ox s 

[p = p(o, q), P = P(o, q), N = N(o, q), C (~) = C(~)(o, q)]. 
conservation laws to be exact. Besides, we can also analyze a more general case. 
the closing conseryation law as the scalar: 

~ (sv (j~) o 

(3.3) 

(3.4) 

(3.5) 

For simplicity, we assume the 
We take 

(3.6) 

IS = S(o, q)]. Thus, classification according to elementary tensor types has led to a com- 
pletely determined form of the equations containing the scalar functions p, P, N, C (~), and 
S (this classification characterizes the fundamental form of gas dynamics), which cannot be 
assigned arbitrarily; they are connected by a condition, stemming from a requirement as yet 
not used, relating to the integrating factors. By definition, qi(V, o, q), ~(V, o, q), and 
$(~)(V, o, q) exist such that after multiplying Eq. (3.3) by hi, Eq. (3.4) by ~, and Eq. 
(3.5) by ~(~), and su~ing, we obtain Eq. (3.6). Moreover, equations analogous to Eq. (1.3) 
must be satisfied. 

We assume, additionally, that (qi) transform as a covariant vector, ~ and $(~) as scalars 
with respect to all transformations from L. By the same token, factors completely in the 
spirit of our program may be classified and integrated according to the elementary tensor 
types. Furthermore, this hypothesis strongly reduces the calculations. But it should be 
noted that logically it is not necessary and can be weakened. It follows from the hypoth- 
esis that the integrating factors must have the structure qi = T(o, q)Vi, ~ = ~(o, q), and 
~(~) = ~(~)(o, q) (V i ~ gijV i, gij is a Minkowski covariant tensor). 

According to the definition in Sec. i, the mapping (V, o, q) + (~, ~, ~) [in ~ (Ni)' 
= (~(~))] is locally one-to-one. By the same token, the state S locally is characterized 

completely by the set (q, r g) or, more conveniently, by the set (V, ~, 4, ~). 

We assume also that N ~ 0, z ~ 0. Formally this hypothesis is not necessary and is 
made only so as to be able to write the concluding expression in the traditional physical 
form. Since �9 ~ 0, we can put T ~ -i/~. 

From the hypotheses made, it follows that the functions p, P, N, C(~), and S must satis- 
fy the condition 

%'---1 

Td (S /N)  - -  d (c2p/N) + Pd ( t / N )  - -  ~]  tk~)d (C(a)/N) ( 3,7 ) 

[B(~)(T, ~, 6) are functions (see also [15,16])]. 

If the system of conservation laws (3.3)-(3.6) is complete, and we assume that the inte- 
grating factors have the tensor type indicated above (N ~ 0, �9 ~ 0), it follows that condition 
(3.7) is then valid. Conversely, if we have Eqs. (3.3)-(3.5), where condition (3.7) holds, 
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relation (3.6) is then satisfied. For this we need to multiply Eq. (3.3) by Di ~ ~Vi, Eq. 

\ ] j  

Thus, concepts of invariance, in combination with the requirement of completeness of 
the conservation laws, again rigidly determine the structure of the equations and lead to 
the Gibbs differential form (3.7), which is usually regarded as an expression of the second 
law of thermodynamics. This fact deserves attention since unexpectedly the thermodynamics 
here receives a new formal expression and turns out to be an internal property of a definite 
class of differential equations. However, one should not assume that thermodynamics must 
be entirely reduced to the formal principles described above and their possible generaliza- 
tions. The Gibbs differential form retains its significance of a Special fundamental prin- 
ciple, making it possible to relate two different theoretical schemes of formal and physical 
content, in turn. Thus, on the one hand, we can bring in a physical meaning to the formal 
constructions and assiKn to them a physical perspective; on the other hand, formalization 
of physical principles creates for them the perspective of new generalizations, and the 
possibility of applying them in new situations. 

4. Principles of Thermodynamics and Differential Equation s . We now examine more care- 
fully the principles ("laws") of thermodynamics. 

i. The first law of thermodynamics is a statement of the law of conservation of energy. 
This statement is formalized here in the law of conservation of energy (of mass), of momentum 

aT~J/Oz ] = O, (4.1) 

and, in a more general scheme, is expressed in the acceptance of a basic system of conserva- 
tion laws, i.e., in the requirement of divergence of the initial set of thermodynamic equa- 
tions. 

2. The second law includes a complex of statements, one of which relates to the asser- 
tion of the irreversibility of processes and to dissipative phenomena. We shall not consider 
this circle of ideas here. Another set of ideas is connected with the Gibbs differential 
form and, in one of the widely prevalent expressions, with a postulate concerning existence 
of the integrating factor I/T. The integrating factor for the conservation law (4.1) turns 
out to be equal to the "temperature vector" (TV k) = (-(I/T)V k) (for a Lorentzian system, the 
axiomatics for which are simpler and more straightforward than for a Galilean system). Of 
course, such a narrow correspondence is not accidental, but testifies to the reasonableness 
of the postulates adopted. 

3. In thermodynamics there is yet a third law, introduced by Nernst and Planck. It 
describes the well-defined uniformity in the behavior of matter as T + 0, i.e., in other words, 
the case of uniform degeneration in the physics of possible equations of states. 

4. It is possible that the third law has, in its way, a symmetric complement at the 
opposite end of the temperature scale, namely a fourth law. It is entirely plausible that 
as T + = the possible forms of the equations of state may again degenerate, with the asympto- 
tic relation, 

p = c2p/3 (4.2) 

(see, for example, [15]). Of course, relation (4.2) has meaning only for a Lorentzian sys- 
tem. Equation (4.2) is equivalent to the equation Ti i = 0, where, as usual, Tki ~ gkiTJ i. 
For simplicity, let v = !, i.e., the basis system consists only of Eqs. (3.3) and (3.4~. The 
differential form (3.7) takes on the form 

Td(S/N) = d ( c ~ N )  + Pd(l /N) .  

From Eqs. (4.2) and (4.3) we obtain the equation of state 

(4.3) 

S / N  = G(~), ~ ( c = p ) a / N  4 = (c~pIN)a(i/N) (4.4) 

[G(n) is some function]. From Eqs. (4.3) and (4.4) we obtain T and P, where P coincides, 
of course, with relation (4.2), and 

T = dl3)(c~pIN)lU(~#Glo~i)l. (4.5) 
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It turns out that if an equation of state satisfies Eqs. (4.2)-(4.5), the system (3.3), 
(3.4) is invariant with respect to conformal transformations of the coordinates (all the con- 
formal transformations are described in [17]). Thus, if as T + ~ the relation (4.2) holds, 
an additional symmetry arises asymptotically. The equations of an electromagnetic field, 
as is well known, are also conformally invariant. One gains the impression that as T ~ 
we have, for all materials and for the field, a universal symmetry, i.e., conformal invari- 
ante. If this is true, it must then be regarded as exact and a general expression of the 
fourth law. In addition, this becomes an additional confirmation of our statement in the 
introduction to the effect that a group is the most fundamental object (along with the special 
divergent structure of the dynamical equation). 

It would be very interesting if one could find a similar expression also for the third 
law, i.e., if one could find a universal (for all materials) invariance of an appropriate 
set of equations and/or an additional conservation law. 
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